Distinct pathways regulate expression of cardiac electrical and mechanical junction proteins in response to stretch.
نویسندگان
چکیده
To define mechanisms regulating expression of cell-cell junction proteins, we have developed an in vitro system in which neonatal rat ventricular myocytes were subjected to pulsatile stretch. Previously, we showed that expression of the gap junction protein, connexin (Cx) 43, is increased by approximately 2-fold after 1 hour of stretch, and this response is mediated by stretch-induced secretion of vascular endothelial growth factor (VEGF). Here, we report that the mechanical junction proteins plakoglobin, desmoplakin, and N-cadherin are also upregulated by pulsatile stretch but by a mechanism independent of VEGF or other secreted chemical signals. Stretch-induced upregulation of mechanical junction proteins was blocked by anti-beta1 and anti-beta3 integrin antibodies. Transfection of cells with adenovirus expressing GFP-FRNK, a dominant-negative inhibitor of focal adhesion kinase (FAK)-dependent signaling, blocked stretch-induced upregulation of Cx43 and mechanical junction proteins but did not block the ability of exogenous VEGF to upregulate Cx43 expression. Conditioned medium removed from uninfected cells after stretch increased Cx43 expression when added to nonstretched cells, and this effect was blocked by anti-VEGF antibodies, but stretch-conditioned medium from GFP-FRNK cells had no effect on Cx43 expression. The src kinase inhibitor 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine blocked stretch-induced upregulation of mechanical junction proteins but not Cx43. Thus, stretch upregulates expression of both electrical and mechanical junction proteins via integrin-dependent activation of FAK. Stretch-induced upregulation of Cx43 expression is mediated by FAK-dependent secretion of VEGF. In contrast, stretch-induced upregulation of adhesion junction proteins involves intracellular mechanotransduction pathways initiated via integrin signaling and acting downstream of src kinase.
منابع مشابه
Enterotoxigenic Escherichia coli infection induces tight junction proteins expression in mice
Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in travelers, young children and piglets, but the precise pathogenesis of ETEC induced diarrhea is not fully known. Recent investigations have shown that tight junction (TJ) proteins and aquaporin 3 (AQP 3) are contributing factors in bacterial diarrhea. In this study, using immunoblotting and immunohistochemistry analyses, we found that E...
متن کاملMatrix-protein-specific regulation of Cx43 expression in cardiac myocytes subjected to mechanical load.
To elucidate mechanisms responsible for mechanotransduction in the heart and define the effects of remodeling of the extracellular matrix, we cultured neonatal rat ventricular myocytes on native type I collagen, fibronectin, or denatured collagen and subjected them to uniaxial, pulsatile stretch. Changes in expression of the cardiac gap junction protein, Cx43, were measured by confocal microsco...
متن کاملAlteration in cardiac uncoupling proteins and eNOS gene expression following high-intensity interval training in favor of increasing mechanical efficiency
Objective(s):High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expressio...
متن کاملCardiac gap junction remodeling by stretch: is it a good thing?
Cardiac cells contract and are also normally exposed to the mechanical events in their surroundings. It is now well established that both cardiac gene expression and protein synthesis are subject to regulation by mechanical forces, including stretch. For example, mechanical stretch is known to be one of the most important stimuli leading to cardiac hypertrophy,1–5 and recent studies indicate th...
متن کاملبررسی اثر مهارگرهای مسیرهای انتقال پیام داخل سلولی بر میزان بیان CXCکموکین IP-10/Mob-1 توسط هپاتوسیتها
Introduction: Chemokines are low molecular weight proteins (8-17kDa) with the main role of immune cells recruitment to injured tissues. IP-10/Mob-1 is a CXC chemokine and different cell systems in response to external stimulation produce this chemokine. Various signaling pathways are used by cell and tissue systems to regulate production of proteins e.g. chemokines. Therefore we have investigat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 97 4 شماره
صفحات -
تاریخ انتشار 2005